- **1** 三角形 ABC において,辺 AB を 2:1 に内分する点を M,辺 AC を 1:2 に内分する点を N とする. また,線分 BN と線分 CM の交点を P とする.
 - (1) \overrightarrow{AP} を、 \overrightarrow{AB} と \overrightarrow{AC} を用いて表せ.
 - (2) 辺 BC, CA, AB の長さをそれぞれ a, b, c とするとき, 線分 AP の 長さを, a, b, c を用いて表せ.

(配点率 30%)

- $oxed{2}$ n を 2 以上の自然数とし,1 個のさいころを n 回投げて出る目の数を順に X_1, X_2, \ldots, X_n とする。 X_1, X_2, \ldots, X_n の最小公倍数を L_n ,最大公約数を G_n とするとき,以下の問いに答えよ。
 - (1) $L_2=5$ となる確率および $G_2=5$ となる確率を求めよ。
 - (2) L_n が素数でない確率を求めよ。
 - (3) G_n が素数でない確率を求めよ。

(配点率 35%)

- **3** 以下の問いに答えよ.
 - (1) 実数 α, β に対し,

$$\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) dx = \frac{(\alpha - \beta)^3}{6}$$

が成り立つことを示せ.

(2) a,b を $b>a^2$ を満たす定数とし、座標平面上に点 A(a,b) をとる。 さらに、点 A を通り、傾きが k の直線を ℓ とし、直線 ℓ と放物線 $y=x^2$ で囲まれた部分の面積を S(k) とする。k が実数全体を動くとき、S(k) の最小値を求めよ。

(配点率 35%)