1 実数 x,y が $|x| \le 1$ と $|y| \le 1$ を満たすとき、不等式 $0 \le x^2 + y^2 - 2x^2y^2 + 2xy\sqrt{1-x^2}\sqrt{1-y^2} \le 1$

が成り立つことを示せ。

(配点率 35 %)

- ② 直線 $\ell: y = kx + m \ (k > 0)$ が円 $C_1: x^2 + (y 1)^2 = 1$ と放物線 $C_2: y = -\frac{1}{2}x^2$ の両方に接している。このとき,以下の問いに答えよ。
 - (1) kとmを求めよ。
 - (2) 直線 ℓ と放物線 C_2 および y 軸とで囲まれた図形の面積を求めよ。

(配点率 35%)

- 平面上に長さ 2 の線分 AB を直径とする円 C がある。2 点 A,B を除く C 上の点 P に対し,AP = AQ となるように線分 AB 上の点 Q をとる。また,直線 PQ と円 C の交点のうち,P でない方を R とする。このとき,以下の問いに答えよ。
 - (1) $\triangle AQR$ の面積を $\theta = \angle PAB$ を用いて表せ。
 - (2) 点 P を動かして $\triangle AQR$ の面積が最大になるとき, \overrightarrow{AB} を \overrightarrow{AB} と \overrightarrow{AP} を用いて表せ。

(配点率 30 %)