〔1〕(配点50点)

実数 a,c を係数とする関数 $f(x)=ax^2+c$ について、次の条件を考える. (*) $0 \le x \le 1$ の範囲で $f(x) \ge (x+1)^2$ が成立する.

- (1) $a \ge 2$ のとき,条件(*)を満たす最小の c の値は $\frac{a}{a-1}$ であることを示せ.
- (2) $a \le 2$ のとき,条件(*)を満たす最小の c の値は 4-a であることを示せ.
- (3) 関数 f(x) が条件(*)を満たしているとき,定積分 $\int_0^1 f(x)dx$ を最小にする a,c と,そのときの定積分の値を求めよ.

〔2〕(配点50点)

座標平面上で,不等式 $2|x-4|+|y-5| \le 3$, $2||x|-4|+||y|-5| \le 3$ が表す領域を,それぞれ A,B とする。

- (1) 領域 A を図示せよ。
- (2) 領域 B を図示せよ。
- (3) 領域 B の点 (x,y) で、x が正の整数であり y が整数であって、 $\log_2 |y|$ が有理数となる点を、理由を示してすべて求めよ。

〔3〕(配点50点)

\mathbf{A}

a,b,c を実数とし、a>0 とする. $f(x)=ax^2+bx+c$ とおく. 実数 p に対し、x の関数 px-f(x) の最大値を g(p) とおく.

- (1) 2 つの関数 y = f(x) と y = g(x) が一致するとき, f(x) を求めよ.
- (2) 実数 x に対し、p の関数 xp-g(p) の最大値を h(x) とおく、h(x) を求めよ.
- (3) 直線 y = px + q が点 (t, f(t)) で y = f(x) のグラフに接するための必要十分条件は

$$g(p) = pt - f(t)$$
 $productor q = -g(p)$

であることを示せ.

В

 $\{m_k\}$ を公比 r の等比数列とする。2 次関数 $y=x^2$ のグラフを C とし,C 上に点 P_1 をとる。各自然数 k に対し,点 P_k から点 P_{k+1} を順次つぎのように定める。

点 P_k を通り傾き m_k の直線を l_k とし,この直線と C とのもう一つの交点を P_{k+1} とする。ただし,C と l_k が接する場合は $P_{k+1} = P_k$ とする。点 P_k の x 座標を a_k とする。

- (1) a_{k+1} を a_k と m_k で表せ。
- (2) 数列 $\{a_k\}$ の一般項を a_1, m_1, r, k で表せ。
- (3) $a_1 = \frac{m_1}{1+r}$ とする。このとき,ある 2 次関数 $y = bx^2$ があって,すべての自然数 k に対し直線 l_k がその 2 次関数のグラフに接することを示し,b を r で表せ。ただし, $m_1 \neq 0, r \neq -1, 0$ とする。

\mathbf{C}

- (1) 次の流れ図に対応するプログラムを実行する。 C=105 を入力した とき、X,Y および N の値を出力順にすべて示せ。
- (2) 座標平面上で、x 座標と y 座標がともに整数である点を格子点と呼ぶ。 自然数 A,B,R を入力したとき、第 1 象限(x 軸、y 軸は含まない) にあり、かつ中心が (A,B) で半径が R の円の内部および周上にある 格子点の個数と、それらの格子点のうちで原点からの距離が最大であ る格子点(複数個あるときは x 座標が最大のもの)の座標を出力する プログラムの流れ図を、方針を記述してから作成せよ。

〔4〕(配点50点)

\mathbf{D}

空間内に四面体 OABC があり $\angle AOB$, $\angle BOC$, $\angle COA$ はすべて 90° であるとする. 辺 OA, OB, OC の長さを, それぞれ a, b, c とし, 三角形 ABC の重心を G とする.

- (1) $\angle OGA$, $\angle OGB$, $\angle OGC$ がすべて 90° であるための条件を a,b,c の 関係式で表せ.
- (2) 線分 BC を 1:2 に内分する点を D とする. 点 P は直線 AD 上の A 以外の点を動き,点 Q は三角形 APQ の重心が点 G になるように動く.このとき,線分 OQ の長さの最小値を求めよ.

\mathbf{E}

0 < a < 1 である定数 a に対し、複素数平面上で z = t + ai (t は実数全体を動く)が表す直線を l とする。ただし、i は虚数単位である。

- (1) 複素数 z が l 上を動くとき, z^2 が表す点の軌跡を図示せよ。
- (2) 直線 l を, 原点を中心に角 θ だけ回転移動した直線を m とする。 m と
 - (1) で求めた軌跡との交点の個数を $\sin \theta$ の値で場合分けして求めよ。

 \mathbf{F}

座標平面上に(0,0),(1,0),(1,1),(0,1) を頂点とする正方形がある。ボールはこの正方形の中のすべての点に同様に確からしく落ちて, $y \le x(a-x)$ の部分に落ちれば当たりとする。ただし, $0 < a \le 2$ とする。

- (1) ボールを 1 回落とす。当たる確率を求めよ。
- (2) 1 回目は $a = \frac{1}{2}$, 2 回目は $a = \frac{3}{2}$ として, ボールを 2 回落とす。1 回 だけ当たる確率を求めよ。
- (3) a の値を変えずにボールを 3 回落とす。少なくとも 1 回は当たる確率 が $\frac{19}{27}$ 以上であり,当たりの数の期待値が $\frac{3}{2}$ 以下になるような a の値 の範囲を求めよ。