1

$$f(\theta) = \cos 4\theta - 4\sin^2 \theta$$

(30点)

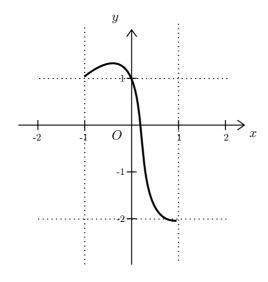
とする。 $0^{\circ} \leq \theta \leq 90^{\circ}$ における $f(\theta)$ の最大値および最小値を求めよ。

2 (30点)

区間 $-1 \le x \le 1$ で定義された関数 f(x) が、

$$f(-1) = f(0) = 1, \quad f(1) = -2$$

を満たし、またそのグラフが下図のようになっているという。



このとき、

$$\int_{-1}^{1} f(x)dx \ge -1$$

を示せ。

3

(30点)

 $\triangle OAB$ において、 $\mathbf{a} = \overrightarrow{OA}$ 、 $\mathbf{b} = \overrightarrow{OB}$ とする。

$$|\mathbf{a}| = 3$$
, $|\mathbf{b}| = 5$, $\cos(\angle AOB) = \frac{3}{5}$

とする。このとき、 $\angle AOB$ の 2 等分線と、B を中心とする半径 $\sqrt{10}$ の円との 交点の、O を原点とする位置ベクトルを、 \mathbf{a},\mathbf{b} を用いて表せ。

(30点)

cを実数とする。xについての 2次方程式

$$x^2 + (3 - 2c)x + c^2 + 5 = 0$$

が 2 つの解 α , β を持つとする。複素平面上の 3 点 α , β , c^2 が三角形の 3 頂点になり、その三角形の重心は 0 であるという。c を求めよ。

5 (30点)

n, a, b を 0 以上の整数とする。a, b を未知数とする方程式

$$a^2 + b^2 = 2^n$$

を考える。

- (1) $n \ge 2$ とする。a, b が方程式を満たすならば、a, b はともに偶数であることを証明せよ。(ただし、0 は偶数に含める。)
- (2) 0 以上の整数 n に対して、方程式を満たす 0 以上の整数の組 (a,b) をすべて求めよ。