- 【1】 k を正の実数とする。座標平面上に直線 $\ell: y = kx + 1$ と放物線 $C: y = x^2$ がある。 ℓ と C の交点のうち x 座標の小さい方を P、大きい方を Q とする。さらに,線分 PQ の垂直二等分線を m とし,m と C の交点のうち x 座標の小さい方を R、大きい方を S とする。
 - (1) 線分 PQ の中点 M の座標を k を用いて表せ。
 - (2) k が正の実数を動くとき、線分 RS の中点 N の y 座標が最小となる k の値を求めよ。また、そのときの P と Q の座標を求めよ。

2 関数

$$f(\theta) = \frac{1}{\sqrt{2}}\sin 2\theta - \sin \theta + \cos \theta \quad (0 \le \theta \le \pi)$$

を考える。

- (1) $t = \sin \theta \cos \theta$ とおく。 $f(\theta)$ を t の式で表せ。
- (2) $f(\theta)$ の最大値と最小値、およびそのときの θ の値を求めよ。
- (3) a を実数の定数とする。 $f(\theta)=a$ となる θ がちょうど 2 個であるような a の範囲を求めよ。

- $oxed{3}$ n を 2 以上の自然数とする。1 個のさいころを続けて n 回投げる試行を行い、出た目を順に X_1, X_2, \cdots, X_n とする。
 - (1) X_1, X_2, \cdots, X_n の最大公約数が 3 となる確率を n の式で表せ。
 - (2) X_1, X_2, \cdots, X_n の最大公約数が 1 となる確率を n の式で表せ。

- 4 座標平面上に 2 つの放物線 $C_1: y = 2x^2$ と $C_2: y = -x^2 + 2x \frac{19}{8}$ がある。
 - (1) C_1 と C_2 の両方に接する直線をすべて求めよ。
 - (2) (1) で求めた直線のうち傾きが負であるものを ℓ とする。 C_{1},x 軸および ℓ が囲む部分の面積を求めよ。