$oxed{1}$ a を正の実数とし、2 つの放物線

$$C_1: y = x^2$$

$$C_2: y = x^2 - 4ax + 4a$$

を考える。

- (1) C_1 と C_2 の両方に接する直線 ℓ の方程式を求めよ。
- (2) 2 つの放物線 C_1 , C_2 と直線 ℓ で囲まれた図形の面積を求めよ。

- $oxed{2}$ A,B それぞれがさいころを 1 回ずつ投げる。
 - (i) 同じ目が出たときは A の勝ちとし、異なる目が出たときには大きい目を出した方の勝ちとする。
 - (ii) p,q を自然数とする。A が勝ったときは、A が出した目の数の p 倍を A の得点とする。B が勝ったときには、B が出した目の数に A が出した目の数の q 倍を加えた合計を B の得点とする。負けた者の得点 は 0 とする。

A の得点の期待値を E_A , B の得点の期待値を E_B とする。以下の問いに答えよ。

- (1) E_A , E_B をそれぞれ p, q で表せ。
- (2) $E_A=E_B$ となる最小の自然数 p と、そのときの E_A の値を求めよ。

 $a_n = \frac{1}{n(n+1)}$ を第 n 項とする数列を、次のように奇数個ずつの群に分ける。

$$\underbrace{a_1}_{\text{\mathfrak{g} 1 $\sharp \mathsf{I}$}}, \underbrace{a_2\,,\,a_3\,,\,a_4}_{\text{\mathfrak{g} 2 $\sharp \mathsf{I}$}}, \underbrace{a_5\,,\,a_6\,,\,a_7\,,\,a_8\,,\,a_9}_{\text{\mathfrak{g} 3 $\sharp \mathsf{I}$}}, \dots$$

k を自然数として、以下の問いに答えよ。

- (1) 第 k 群の最初の項を求めよ。
- (2) 第k 群に含まれるすべての項の和 S_k を求めよ。
- (3) $(k^2+1)S_k \leq \frac{1}{100}$ を満たす最小の自然数 k を求めよ。

- 4 直角三角形 ABC において、 $\angle C = \frac{\pi}{2}$ 、AB = 1 であるとする。 $\angle B = \theta$ とおく。点 C から AB に垂線 CD を下ろし、点 D から BC に垂線 DE を下ろす。AE と CD の交点を F とする。
 - (1) $\frac{DE}{AC}$ を θ で表せ。
 - (2) $\triangle FEC$ の面積を θ で表せ。