- a,b を実数とする。方程式 $x^2 + ax + b = 0$ が実数解をもち、すべての解の 絶対値が 1 以下であるとする。
 - (1) この条件を満たす点 (a,b) 全体を ab 平面上に図示せよ。
 - (2) a+2b の最大値と最小値を求めよ。

- - (1) 点 $A(-\sqrt{2},0)$ と O(0,0) を通り中心の座標が $(-\frac{\sqrt{2}}{2},0)$ および $(-\frac{\sqrt{2}}{2},2)$ である 2 つの円は、どちらも円 C に接することを示せ。
 - (2) 点 P が円 C 上を動くとき、 $\cos \angle APO$ の最大値と最小値を求めよ。

- $oxed{3}$ 数 1,2,3 を重複を許して n 個並べてできる数列 a_1,a_2,\ldots,a_n を考える。
 - (1) 条件 $a_1 \le a_2 \le \cdots \le a_n = j$ を満たす数列が $A_n(j)$ 通りあるとする。 ただし、j=1,2,3 とする。
 - (a) $A_n(1), A_n(2)$ を求めよ。
 - (b) $n \ge 2$ のとき、 $A_n(3)$ を $A_{n-1}(1), A_{n-1}(2), A_{n-1}(3)$ で表し、 $A_n(3)$ を求めよ。
 - (2) $n \ge 2$ のとき、条件

$$a_1 \leq a_2 \leq \cdots \leq a_{n-1}$$
 by $a_{n-1} > a_n$

を満たす数列は何通りあるか。

- $oxed{4}$ $a>0,\,b\geqq0,\,0< p<1$ とし、関数 $y=ax-bx^2$ のグラフは定点 $P(p,\,p^2)$ を通るとする。このグラフの $0\le x\le p$ に対応する部分を C で表す。
 - (1) *b を a と p を*用いて表せ。
 - (2) a が範囲 $p \le a \le 1$ を動くとき、C 上の点 (x,y) の動く領域を D とする。
 - (a) x を固定して y の動く範囲を求めよ。
 - (b) *D* を図示せよ。
 - (3) D の面積 S を p で表し、 $\frac{1}{2} \leq p \leq \frac{3}{4}$ の範囲で S の最大値と最小値を求めよ。